The alphabet soup of inflammatory neuropathies

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Diagnostics</th>
<th>Treatments</th>
<th>Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td>• LP</td>
<td>• IVIg</td>
<td>• IGOS</td>
</tr>
<tr>
<td>• GBS</td>
<td>• CSF</td>
<td>• PE</td>
<td>• I-SID</td>
</tr>
<tr>
<td>• AIDP</td>
<td>• EMG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• AMAN</td>
<td>• MAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MFS</td>
<td>• GM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• A-CIDP</td>
<td>• GD1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>• GD1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CIDP</td>
<td>• GQ1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MMN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• LSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• DADS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MADSAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CANOMAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MGUS-NP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Peripheral nervous system

Axon

Myelin (insulation)

Neuron

Nerve

Myelin sheath
Normal nerves

- Muscle strength
 - limbs, face
 - breathing
 - swallowing

- Sensation
 - touch
 - pain
 - coordination

- Reflexes

Neuropathy

- Weakness
 - limbs, face
 - respiratory failure
 - swallowing

- No or abnormal sensation
 - numbness
 - pain, cold
 - ataxia

- Low or absent reflexes
Reflex hammer
Knee jerk reflex
Lumbar puncture (LP) and cerebrospinal fluid (CSF)
Nerve electrophysiology and myogram (EMG)

- Myelin damage (demyelination)
- Axon damage (degeneration)
Patients with inflammatory neuropathies in USA
estimations based on data from The Netherlands

<table>
<thead>
<tr>
<th></th>
<th>New this year</th>
<th>Total alive with/after disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBS</td>
<td>3,000 - 4,000</td>
<td>60,000 - 80,000</td>
</tr>
<tr>
<td>MFS</td>
<td>100 - 200</td>
<td>2,000 - 4,000</td>
</tr>
<tr>
<td>CIDP</td>
<td>400 - 500</td>
<td>8,000 - 10,000</td>
</tr>
<tr>
<td>MMN</td>
<td>100 - 200</td>
<td>2,000 - 4,000</td>
</tr>
<tr>
<td>Total</td>
<td>3,500 - 5,000</td>
<td>70,000 - 100,000</td>
</tr>
</tbody>
</table>

Population: 320 million
Guillain-Barré syndrome (GBS)

G. Guillain | J-A. Barré | A. Strohl
Guillain-Barré syndrome (GBS)

- All ages, but increasing with age
- More frequent in males than females
- Rapidly progressive and potentially life-threatening
- Symmetrical weakness and sensory symptoms in legs and arms
- Frequently painful
- 25% respiratory failure requiring ventilation at ICU
- 15% autonomic dysfunction
- Large variation in clinical course between patients
Two main subtypes of GBS

- Damaged myelin
 - Acute inflammatory demyelinating polyneuropathy (AIDP)
- Damaged axon
 - Acute motor (sensory) axonal neuropathy (AMAN) (AMSAN)
Miller Fisher syndrome (MFS)

- Three typical characteristics
 - Weakness muscles for eye movements (double vision)
 - Often with drooping eyelids and facial weakness
 - Poor balance and coordination with clumsy walking (ataxia)
 - On physical examination: loss of tendon reflexes

- Variant of GBS, but no weak of the limbs
Typical clinical course of GBS

- Progression
- Plateau phase
- Recovery phase
- Disability

- <4 weeks
- weeks
- months
- years

Recovery phase
Disability
Treatment of GBS

• Supportive care
 • Artificial ventilation
 • Pain medication
 • Prevention complications

• Specific treatments
 • Immunoglobulins (IVIg)
 • Plasma exchange (PE)

• Rehabilitation and physiotherapy
Infections that can cause GBS

- Campylobacter bacteria
- Cytomegalovirus
- Epstein-Barr virus
- Mycoplasma bacteria
- Hepatitis E virus

Infectious mononucleosis ('kissing disease')

- Gastro-intestinal infection: 30%
- Respiratory tract infection: 15%
- Infectious mononucleosis ('kissing disease'): 10%
- Respiratory tract infection: 5%
- Hepatitis: 5%

GBS
Infections that trigger immune responses to nerves
Infections that trigger immune responses to nerves
Erasmus GBS outcome score (EGOS)

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Categories</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>≤40</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41-60</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>>60</td>
<td>1</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>absent</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>1</td>
</tr>
<tr>
<td>GBS disability score</td>
<td>0-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

EGOS 1 - 7

Chance unable to walk at 6 months according to EGOS (N=762)

![Graph showing the predicted fraction not walking at 6 months against EGOS score with AUC 0.85.](image)

AUC 0.85
Chronic inflammatory demyelinating poly(radiculo)neuropathy (CIDP)
CIDP

• **Clinical features:**
 - Slow onset (disease progression > 8 weeks)
 - Symmetrical weakness and sensory deficits
 - Legs more involved than arms
 - Sometimes cranial nerve involvement

• **Diagnosis:**
 - Neurological exam
 - Blood tests (to exclude other diseases)
 - Spinal tap
 - Nerve electrophysiology

• **Treatments:**
 - Immunoglobulins (IVIg)
 - Corticosteroids
 - Plasma exchange (PE)
Typical clinical course of GBS and CIDP

- GBS: <4 weeks (Acute onset) A-CIDP
- CIDP: weeks, months, years
Peripheral nerves of a patient with CIDP

Myelin damage

‘Union bulbs’

Bosboom et al., 2001
Right diagnosis and treatment?

- Important to excluded other causes of neuropathy:
 - Hereditary neuropathy
 - Diabetes-related polyneuropathy
 - Paraprotein- or MAG-related polyneuropathy
 - Chronic idiopathic axonal polyneuropathy

- Most patients respond to treatment (at least to some extent).

- CIDP may recover, so try reduce or stop therapy regularly.

- Discriminate between:
 - active CIDP requiring treatment
 - inactive CIDP with residual damage
Multifocal Motor Neuropathy (MMN)
MMN

- **Clinical features:**
 - Slow onset
 - Asymmetrical (stepwise involvement specific motor nerves)
 - Weakness in legs more than arms
 - Rarely sensory symptoms (at later stages)

- **Diagnosis:**
 - Neurological exam
 - Blood tests (antibodies to GM1)
 - Spinal tap
 - Nerve electrophysiology

- **Treatments:**
 - Immunoglobulins (IVIg)
Disease mechanism of MMN

Vlam et al. 2013
Typical clinical course of GBS, CIDP and MMN

- **GBS**
- **MMN**
- **CIDP**
Differences between GBS, CIDP and MMN

<table>
<thead>
<tr>
<th></th>
<th>GBS</th>
<th>CIDP</th>
<th>MMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>sudden</td>
<td>slow</td>
<td>slow</td>
</tr>
<tr>
<td>Distribution</td>
<td>symmetric</td>
<td>symmetric</td>
<td>asymmetric</td>
</tr>
<tr>
<td>Weakness</td>
<td>legs + arms</td>
<td>legs > arms</td>
<td>arms > legs</td>
</tr>
<tr>
<td>Sensory deficits</td>
<td>usually</td>
<td>usually</td>
<td>rare</td>
</tr>
<tr>
<td>Effective therapy</td>
<td>IVIg, PF</td>
<td>IVIg, steroids, PF</td>
<td>IVIg</td>
</tr>
<tr>
<td>Course</td>
<td>single episode (95%)</td>
<td>relapsing-remitting, chronic</td>
<td>persistent</td>
</tr>
</tbody>
</table>
Gaps in current knowledge

- No risk factors known, so all persons may develop these neuropathies.

- Not known in many patients which targets attacked by immune system (especially in AIDP en CIDP).

- No 100% accurate diagnostic tests, so still complex diagnoses.

- Treatable diseases, but only when diagnosed early.

- Highly variable response to treatments between patients.

- Little known about long-term effects and how to treat these.
International GBS Outcome Study
International GBS Outcome Study (IGOS)

• Study objectives
 ▪ Find infections and genes that cause GBS
 ▪ Find factors that determine clinical course and outcome in individual patients
 ▪ Develop better treatments for individual patients

• Patients
 ▪ All patients with GBS (and variants) in acute phase (first 2 weeks)
 ▪ More than 1000 patients will participate

• Design
 ▪ Prospective study with follow-up of each patients of 1-3 years
 ▪ Collection of clinical data and blood samples
 ▪ 3 new treatments tested
 ▪ International Second IVIg Dose (I-SID) study
Inflammatory Neuropathy Consortium (INC)

INC meeting in June 2012 in Rotterdam
IGOS: a worldwide study

- 18 participating countries
- 142 participating centers

Inclusion of patients

In process of IRB approval

- Inclusion of patients
- In process of IRB approval
Number of patients participating in IGOS
update October 28th, 2014

715 patients
Number of inclusions per country
update October 28th, 2014
What will IGOS deliver?

- Largest data and biobank ever collected for GBS research.
- Better understanding of the risk factors for developing GBS.
- Prediction of disease course and handicap in individual patients.
- First clues how to adjust treatment in individual patients.
- International collaboration between clinicians and experts.
- Training of young researchers and clinicians.
- Network for similar studies in CIDP, MMN and other neuropathies.
What could you do to support IGOS?

• Continue to participate as a patient in the research project.

• Financial support via GBS-CIDP Foundation International.
Thanks to:

- All patients and relatives involved in research projects
- Research team in Rotterdam
- IGOS Consortium
- Financial support:

GBS•CIDP
Foundation International

Erasmus MC
Universiteit Medisch Centrum Rotterdam

GRIFOLS

CSL Behring
If you can dream it, you can do it.

Walt Disney